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The phenomenon under investigation occurs in various flow systems characterized 
by being dispersive to small-amplitude waves, but such that phase and group 
velocities approach the same finite limit at extreme wavelengths: for example, 
water in an open channel, density-stratified fluid flowing between horizontal 
boundaries, and rotating fluid contained in a tube. It is well known in each of 
these examples that, when a solid body is moved steadily a t  a subcritical velocity 
(i.e. less than the long-wave limit) relative to  the undisturbed fluid, the body 
experiences resistance accountable to the continual development of a pattern 
of waves on the leeward side. But in these circumstances there is a second effect, 
upstream influence, consisting of a disturbance in the form of a uniform long 
wave that extends to a steadily increasing distance ahead of the body; and this 
has for some time been the subject of a controversy, particularly with regard to 
the question whether or not it is always present. The aim of the paper is to estab- 
lish the principle that this second effect is inevitably coexistent with the first, 
being an essential component of the mechanism of wave resistance. 
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Appendix C. Alternative derivation of impulse principle 

1. Introduction 
The object of this paper is to establish a firm interpretation of the phenomenon 

commonly called upstream or forward injluence, or in its strongest manifestations 
blocking, about which there has been controversy in recent years. It is associated 
generally with the phenomenon of wave resistance arising when solid bodies are 
propelled along straight paths in dispersive systems, and the present account 
reveals a vital interdependence of the two phenomena. Three specific flow systems 
are considered having basic attributes in common: open-channel flow ( 5  2), 
density-stratified flow (treated briefly in $ 3 4 ,  and rotating flow (@3, 4). Al- 
though in all these examples the phenomenon under study may be significantly 
complicated by effects of viscosity, it does not depend essentially on them, and 
in this theoretical discussion only inviscid fluids will be considered. 

The water-wave problem examined in $ 2  serves as a helpful prototype, and 
in fact i t  originally suggested to the writer how the more difficult problem of 
rotating flow could be tackled. To put the general topic in focus, suppose that a 
solid obstacle is moved a t  constant horizontal velocity U through water initially 
at  rest, or (what amounts to  the same situation observed from another frame of 
reference), the obstacle is fixed in an initially uniform stream. It is well known that 
the relative flow becomes steady near the obstacle, a wave-train forms behind it 
if the velocity U is subcritical (i.e. less than the velocity of extremely long waves), 
and consequently the obstacle suffers wave resistance. The question of present 
interest is whether these familiar effects are accompanied by a disturbance of the 
water in front of the obstacle, extending eventually to  great distances ahead. 
Actually, as will be shown by fairly simple means in $ 2, water is steadily accumu- 
lated in front so that a rise in surface level spreads continually farther forward. 

From the standpoint of theoretical model-making the question of upstream 
influence in open-channel flow is not presented in any urgent sense, and indeed 
it appears to have been overlooked in most previous treatments of the wave- 
resistance phenomenon (e.g. Lamb 1932, @246, 249). The steady state estab- 
lished ahead of the obstacle after passage of the front of the upstream disturbance 
is qualitatively similar to the original one, differing only in depth and (constant) 
velocity, and the usual ste.ady-flow theory comprehends the whole range of up- 
stream possibilities without needing to discriminate how they might be realized. 
However, the question bears with much greater consequence on the theory of 
wave resistance in rotating and stratified fluids. Here very special models have 
generally been used, which depend crucially on the hypothesis that the effects 
of the obstacle do not extend indefinitely far forward. For example, a tractable 
model of the flow past symmetrical bodies in rotating fluids is provided by the 
assumption that the flow upstream is steady with uniform axial and angular 
velocity, for then the full equations of steady motion can be reduced exactly to a 
linear equation for the stream function (see Long 1953; Squire 1956, $93.4-3.6). 
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But in the light of the fact that upstream influence exists, this cannot be upheld 
as an exact model-except by the extremely artificial supposition that the dis- 
turbance propagating forward cancels out pre-existing non-uniformities in the 
distributions of axial and angular velocity. 

The problem to be examined in $33 and 4 concerns the uniform translation 
of a body along the axis of a rotating fluid. To summarize what is known about 
flows arising in this way, it is essential to refer to the Rossby number Ro = U/Ql ,  
where U is the axial velocity of the body, 1 its maximum (or otherwise typical) 
radius and Q the angular velocity of the undisturbed fluid. The interpretation 
of events when Ro < 1 is soundly established: columns of fluid are then pushed 
ahead of the body and drawn behind it, in the manner originally demonstrated in 
experiments by Taylor (1922). [At this point a distinction should be recognized 
between this strong effect, for which the term blocking is appropriate, and the 
weaker form of columnar disturbance that occurs at  larger Ro, in which fluid 
particles acquire a steady motion but with velocities considerably smaller than 
U.] The condition RO < 1 justifies linearization of the equations of motion, and 
on this basis a great deal of theory has been developed concerning strong Taylor 
columns. The conclusions of such theory are generally in accord with observa- 
tion at  small Ro. If Ro is not particularly small, however, a far more difficult 
theoretical problem is posed, and almost all work on it so far has rested in some 
degree on conjecture. [The same statement can be made about work on the 
analogous problem of stratified flow.] The simplification ensuing from the neglect 
of upstream influence has already been noted, and this has been exploited in 
many theoretical studies. The equations become intrinsically non-linear if the 
hypothesis of steady flow is rejected, but progress has been made by Trustrum 
(1964) and Stewartson (1968) using linearizing approximations of the Oseen type. 
Their work has given some strong indications that an upstream effect is never 
absent from the solution of a properly posed initial-value problem. Again on the 
basis of linearized theory, Lighthill (1967) has presented a very comprehensive 
account of the possible wave motions in a rotating fluid, showing how they can 
comprise forward and rearward columnar disturbances as well as the oscillatory 
lee-wave system that is observed at  moderate Ro. Thus the possibility offorward 
influence at all Ro is already well demonstrated, but not so far its inevitability. 
The existing theory is critically surveyed in chapter 4 of the recent monograph 
by Greenspan (1968): who concludes tentatively (pp. 222, 224) in favour of the 
principle that columnar formation is a universal feature of rotating flows. 

The available experimental evidence is also conflicting. In  experiments with a 
body having a hemispherical front and conical tail, Long (1953) detected no 
forward effect for RO > 0.23; and he used the hypothesis of undisturbed up- 
stream flow to obtain a satisfactory theoretical account of the lee-waves observed 
in his experiments. Recently, however, applying a sensitive new technique to 
visualize the flow ahead of a sphere, Pritchard (1968) has found evidence of 
forward influence at  Rossby numbers much higher than the limit suggested by 
Long. Blocking was observed at al1,Ro < 0.7 approximately, and the presence 
of the more feeble type of columnar disturbance was still indicated at  values of 
Ro as high as about 2. 

4-2 
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As far as thewriter is aware, there is as yet only one example in which the exist- 
ence of upstream influence at finite Rossby number has been predicted with 
certainty. This is the case of an axisymmetric cavity advancing into rotating 
liquid contained in a long tube, which was treated both experimentally and 
theoretically by Benjamin & Barnard (1964). By considering a momentum 
balance they showed that a steady flow relative to the cavity is impossible, and 
in an appendix to their paper L. E. Fraenkel presented an alternative argument 
which confirmed this conclusion. The theoretical prediction was borne out by 
the experiments, which revealed a remarkably vigorous Taylor column at a 
Rossby number about 0.8 based on the cavity radius. 

The present study is comparable with the theoretical work just mentioned, 
in that the approach is directed towards establishing the necessity of upstream 
influence indirectly without requiring the non-linear equations of unsteady 
motion to be solved. In  both the water-wave problem and the problem of rotating 
flow, approximate energy arguments are found to be inherently inconclusive in 
relation to the question of upstream effects, as also are momentum arguments 
referring to only part of the overall disturbance created by the obstacle. But in the 
water-wave problem a definite answer is provided by a reckoning of the total 
horizontal momentum imparted to the water: curiously, it is only from this 
particular physical viewpoint that the intrinsicality of upstream disturbances 
becomes conspicuous. Simple momentum considerations are useless for the 
problem of rotating flow; and in $ 3  a quantity termed the axial impulse is 
defined as an aggregate property of the flow and hence is shown to have a formal 
significance akin to that of total momentum in the water-wave problem. The 
impulse principle established in $ 3 is applied in $ 4  as the basis of a reductio ad 
absurdum. Thus, in the second problem as in the first, the suppositions that wave 
resistance is manifested but that upstream influence is absent are shown to be 
contradictory. 

The aim of the following analysis is to settle a point of general principle, and 
no attempt is made to estimate the actual errors-for instance, in drag cal- 
culations-that may be consequent upon the neglect of upstream influence. 
In  the view of Greenspan (1968, p. 215) and others who have favoured the present 
conclusion, the hypothesis of no upstream disturbance may yet be confirmed to 
give excellent approximations over a wide range of parameters. The material 
of this paper is not incompatible with such a view, but it does sharpen the 
reason for circumspection about calculations that take no account of upstream 
effects. 

2. Upstream influence in open-channel flow 
We consider the problem illustrated in figure 1.  Water is contained in a 

horizontal open channel of rectangular cross-section and unit breadth. The 
depth of the undisturbed water is h,, so that c, = (gh,)* expresses the speed at  
which small-amplitude waves of extreme length propagate relative to the water. 
The situation shown in figure l ( a )  is that a cylindrical obstacle spanning the 
channel is propelled horizontally at a constant velocity U < G,, disturbing the 
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water which was originally at  rest everywhere. It is supposed that the obstacle 
has been moving for only a limited time, and the figure indicates the finite extent of 
the developing disturbance. Figure 1 (b)  is a view of the same situation from a 
frame of reference moving with the obstacle: the undisturbed water then ap- 
proaches with velocity U ,  and also recedes with this velocity beyond the region 
influenced by the obstacle. The assumed condition U < co connotes that the 
undisturbed stream is szcbcritical [i.e. according to the usual definition, Froude 
number P = U/(gho)* < 11. 

The behaviour of the water in the vicinity of the obstacle can be considered 
as axiomatic, being well established by observation and previous theory. It is that 
the relative flow tends to become steady, and a stationary wave-train is formed 
on the rearward side. Thus, after a sufficient time, a virtually steady flow will 
be observed between cross-sections such as B' and C' in figure 1 ( b ) .  The wave 
drag on the obstacle is a uniquely determinate property of this local flow; 
but obviously the consideration of possible regimes between B' and C' cannot by 
itself answer the question whether 0s not the steady uniform flow at B' is the 
same as the original one. Our aim is to show that the answer is always negative. 
There is in fact it continual accumulation of water in front, causing a rise in sur- 
face level that eventually covers any distance, however large, measured from 
the obstacle. This effect is indicated in figure 1, and we shall refer to it as the for- 
ward surge. 

2.1. Conservation equations 
Let x denote the horizontal co-ordinate, increasing in the direction forward of the 
obstacle, and y the vertical co-ordinate measured above the channel bottom. 
Let u, v denote the respective velocity components, p pressure, p density, and 
h(x, t )  the local depth. We define 

(2.1) 

P h  

w = '"{p++p(u2+v2) +pgy}udy. 
J O  

Here M is interpretable as the mass flux through a vertical section, and also as 
the density with respect to x of horizontal momentum. S is conveniently called 
flow force, being the sum of horizontal pressure force and momentum flux. E is 
energy density, and W is the sum of energy flux and the rate of working by pres- 
sure across a vertical section. Accordingly, for all parts of the flow except the 
stretch occupied by the obstacle, the equations expressing conservation of mass, 
momentum and energy are respectively 

(2.5) 

p(ah/at) + axlax = 0, 
aiwlat+as/ax = 0, 
aE/at + a wlax = 0. 
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These equations are exact but too complicated for direct use. To progress we 
have to consider approximate forms of them applicable to waves whose pro- 
perties, such as wavelength in oscillatory trains, vary only gradually and whose 
amplitudes are small. The method is familiar from much recent theoretical work 
on waves in non-linear dispersive systems, and the most helpful account for 
present purposes is by Whitham (1962): reference is made to his paper for several 
results used as follows. It has to be assumed that the variations in wave pro- 
perties are sufficiently gradual, and the overall length of a train is great enough, 
for local averages to be definable over distances large compared with wavelength 
but small compared with the overall length. On the understanding that a fairly 

FIGWEE 1. Illustration of water-wave problem: (a)  obstacle propelled at constant velocity 
U in water originally at rest; ( 6 )  obstacle fixed in stream approaching with velocity U .  

long time has elapsed since the start of the motion, these assumptions appear 
very reasonable in the situation studied here; and so, as a plausible basis for our 
argument, we may simply follow Whitham and other writers and take for granted 
that averaged conservation equations become valid at  sufficiently large times. 
[In anticipation of a later part of this paper, however, it is worth noting that the 
equations to be considered here may also be justified formally as asymptotic 
approximations for t- tm. The procedure in view is one used in $4.3, which 
defines spatial averages over distances proportional to t B  with $ < /3 < 1. By 
this means the asymptotic validity of the following second-order approxima- 
tions may be inferred from known results of linearized surface-wave theory 
applied to the transient problem (e.g. see Stoker 1953; Maruo 1957). The main 
facts are, first, that transients in the vicinity of the obstacle decay proportion- 
ally to t-4 and, secondly, that transients at  the rear end of the oscillatory train 
shown in figure 1 are confined to a region whose length is O(tg), whereas the over- 
all length of the train is O(t).  Also, a long wave such as the forward surge shown 
in figure 1 can have an oscillatory frontal region, but the length of this is only 
O(t*). Thus the terminal zones of either type are obliterated by the specified 
averaging process.] 
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To begin we need to recall the first approximation to the phase velocity G 

(2.6) 

at  which periodic waves propagate relative to the water. This is 

c = (gK-1 tanh K%)-;-, 

where % is the mean depth and K = 2n-/(waweZength). In  this approximation the 
waves are sinusoidal, and the error in (2.6) is proportional to the square of their 
amplitude a. The corresponding group velocity is 

cg = ~ ( K c ) / ~ K  = &( 1 + B K ~  cosech ZK%) c 

= yc, say. (2.7) 

The approximations to (2.1)-(2.4) are averages in the sense that has been ex- 
plained. The locally averaged depth is z, as already denoted, and a mean trans- 
port velocity 42 may be defined such that &% is the local flow rate g / p .  [Note that 
& can differ from the spatial mean value Ti of the horizontal velocity (cf. Whitham 
1962, p. 138).] Each of the other quantities is most usefully expressed as the sum 
of, first, its value for a uniform flow with depth and velocity a and, second, the 
change arising from the superposition of a wave-train on this flow. Thus, follow- 
ing Whitham (1962, s3) ,  we take 

= p&%, (2.8) 

= p(&2h+~g~2)+(2y-+)E, ,  

E = p(+&ZE + + g P )  + EU,, 

(2.9) 

(2.10) 

w = pa(@% + g P )  + (( 2y + &) & + yc}E,, (2.11) 

E = 1 a2. in which w 2pg 
- -  

Under the stated assumptions, three equations like (2 .5 )  relating h, M ,  B, E ,  W. 
may be inferred to describe gradually varying properties. It was pointed out 
by Whitham that in these equations z, a, E, and K (which determines c and y )  
can be considered as the basic dependent variables. He also noted that a system 
of four simultaneous equations is completed by the kinematical condition 

aK a# -+- = 0, 
at ax 

in which w is wave frequency. 
The general solution of this system, in the form applicable to small-amplitude 

wave motions generated from rest, was given by Whitham;? and the solution 
applicable at  present in the fixed frame of reference can be particularized further 
by the condition that in the vicinity of the obstacle it should be cancelled by the 
operator (a/at + Uajax). In  this way we ascertain the possibilities illustrated 
in figure 1 (a). These are: (1) The forward surge which is uniform over virtually 
all its length and whose front advances at  the velocity c,,, so drawing steadily 

t Note that although the system of averaged equations applies in either frame of refer- 
ence, the details are considerably simpler in the fixed frame. Both d and & - h, are then 
O(E,), so that to the first order in E, four terms in (2.9)-(2.11) are immediately negligible. 
Also to this order no Doppler effect is included in w ,  and an equation for E, alone can be 
separated from the system. 
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ahead of the obstacle moving at  the subcritical velocity U .  (2) The oscillatory 
wave-train which is stationary relative to the obstacle so that c = U ,  which is 
uniform in wave amplitude over most of its length, and whose back end advances 
at  the velocity cg = yU < U ,  so falling steadily behind the obstacle. (3) The 
uniform rearward surge whose end recedes at  the velocity - co. Considering these 
features as established by Whitham’s theory, we shall proceed with the inter- 
pretation by applying the conservation equations in their form integrated over 
particular stretches of the channel. By virtue of the fact that the relative flow 
immediately over the obstacle is steady, the effects of the obstacle can then be 
included accurately just as if they were concentrated at  a point on the x-axis. 
For instance, the drag is equivalent to a discontinuity in 8. 

in the forward surge, the oscillatory train 
and the rearward surge will be denoted respectively by 

The values of the mean depth 

The respective transport velocities, which like the above 6’s are all O(E,), 
will be denoted by a+, Q,, a_. 

2.2. The classical argument 

This establishes the relationship between wave resistance 9 and amplitude a 
by considering the energy balance for a region such as between A and C in figure 
1 (a) [see Lamb 1932, $2491. The fact needing emphasis here is that this approach 
oddly evades the question of forward influence : that is to say, a definite expres- 
sion for 9 is obtained without the need for any estimate of the flow ahead of the 
obstacle. 

At the vertical section C through the wave-train, the Grst approximation to 
given by (2.11) is Fc = pgh; iiW + UEw, (2.12) 

and w = 0 at A .  The integrated equation of energy conservation hence confirms 
what is directly obvious, that the rate of increase of the total energy between A 
and C equals the sum of (2.12) and the propulsive power gu-which is equiva- 
lent to a discontinuity in w. Thus, taking the first approximation to given by 
(2.10), we deduce 

(2.13) 

But, to the same approximation, the condition of mass conservation for the 
region between A and C is 

ho{ (cg - U )  s+ + USw} = hoaw, (2.14) 

showing that the first group of terms on the right-hand side of (2.13) cancels out. 
We are left with 

9 = (1 - y )  E, = $pga2( 1 - 2 ~ h ~  cosech 2 ~ h ~ ) ,  (2.15) 

which recovers the classical result. 
Nothing different is learnt from energy considerations for the whole region 

disturbed by the obstacle [i.e. between A and D in figure l(a)]. The rate of 
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energy increase is then ( U  - c,) E, = U (  1 - y )  E, due to the oscillatory wave- 
train, and the contributions from changes in mean surface level again cancel 
out in consequence of mass conservation. [The result (2.15) can also be derived 
rather simply by a momentum argument referring to the steady flow observed 
near the obstacle in the moving frame (see Whitham 1962, $5). One then has 
9 = S,  - S,, where S,  and S, are the respective flow-force values at sections 
such as B’ and C‘ in figure 1 (b) .]  

Some further information is gained from a momentum balance for the classical 
model. At  C the first approximation to 8 given by (2.9) is 

(2.16) 

in which the term ipgh; is just S,, the pressure force in the undisturbed water. 
According to the integrated equation of momentum conservation, the sum of 
B,- S, and the drag on the obstacle equals the rate of increase of horizontal 
momentum between A and C. Hence, using (2.15) to express 23, we obtain 

pgh% + (4 + Y) E, = ph,{(c, - U )  a+ + U0,). (2.17) 

But, to the present order, mass conservation obviously requires 

0, = c,S+ (2.18) 

as well as (2.14), and by means of these two equations a+ and QiW can be eliminated 
from (2.17). There follows after some reduction 

(2.19) 

where F = U/c, < 1 and A = (a/h,)2. [The same result is obtainable from an energy 
balance in the moving frame, for a region such as between A’ and C’ in figure 1 (b).] 

Equation (2.19) shows that necessarily S+ > 8,. That is, the mean surface 
level behind the obstacle is always lower than that in front. But we still have no 
reason to exclude 6, = 0 as a possibility. 

2.3. Necessity of the forward surge 

The preceding subsection has exemplified an idea which, though negative, seems 
vital to the understanding of our general subject, and which is to be met again 
later in the paper. This is the curious evasiveness of evidence about upstream 
influence when wave-resistance phenomena are examined by means of energy 
arguments, or momentum arguments referring to only part of the overall wave 
system. However, the r61e of forward disturbances becomes conspicuous in 
another approach, which refers to the net momentum (or, more generally, net 
impulse-see $ 3  below) of the entire system. On this basis the necessity of up- 
stream influence in rotating flows will be demonstrated in $4 by a reductio ad 
absurdum, and we note here the particularly simple counterpart of this argument 
for the water-wave problem. 

Applied in the fixed reference frame to a stretch of the channel including all 
water disturbed by the obstacle, as between A and D in figure 1 (a ) ,  the momen- 

g = -  
dt ’ (2.20) 

tum equation becomes ad! 
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where A? is the total momentum imparted to the water in the direction of travel 
of the obs0acle. Now suppose there is no forward effect (i.e. 6, = 0). According 
to  (2.19), S,,, is then negative and hence the mass flux in the wave-train must be 
negative. Mass conservation further requires that 6, is positive, in order to 
accommodate the backward flow in the wave-train. Hence, as the rearwa,rd surge 
has to  recede into the still water at D, the mass flux in it also must be negative. 
Thus the total momentum is always negative, which contradicts (2.20), and so 
the assumption of no forward effect is shown to be incorrect. 

2.4. Completion of the solution 

The argument just presented can be extended to give explicit estimates of a,, 
a,, and 6-. First, (2.20) is expressed in its detailed form 

9 = ph,{ (c, - U )  12, + ( U  - cv )  a, + (c, + co) a_>, (2.21) 

which: after substitution of (2.15), then (2.14), (2.18) and the further relation 
42- = - co 6- obviously required by mass conservation, can be rearranged to  give 

(1 -F) (1 + P - 7 F )  6, + (1  - 7) F26, - ( 1  + Y F )  6- = +( 1 - 7) A. (2.22) 

Secondly, the overall condition of mass conservation is expressed by 

(c, - U )  6, + ( U  -cy) s,,+ (c,+ cg)  6- = 0, 

i.e. (1 - S) 8, + (1 - y )  F6, + (1 + Y F )  s- = 0. (2.23) 

Solving the set of simultaneous equations (2.19), (2.22) and (2.23) we obtain 
finally 

6, (1 -7) (2 - P + 2yF)  

4,. _ -  - -- Q + F ( l - y ) ( % -  1) 

6- --- (1 - y) (2 +P- 2 y F )  
A 8(1 + F )  (1 +yF) * 

_ -  - 
A 8 ( l - P ) ( l - ~ F )  ’ 

A 8( 1 + P) (1 - y P )  

- 

(2.24) 

I-t’e also have, by rearranging (2.6), 
tanhKh, F2 = -, 

Kh, 

from which Kh, can be calculated a,s a function of F ,  and then y can be found from 
(2.7). 

The results (2.24) are plotted as functions of F in figure 2. It is of interest that 
6, is positive and S,,, 6- both negative, because this implies that  G,, a,, G- are 
all positive.? Thus each of the three parts of the wave system adds towards the 

t Note that in the forwa.rd and rearward surges the transport velocities ii,, ti- are the 
same as the respective mean horizontal velocities, but in the oscillatory wave-train the 
mean velocity is given by - 

U, = C,,-E,/pUh, 

(cf. Whitham 1962, p. 139). The substitution of this expression in (2.21) shows that Tiio 
is negative (i.c. the spatially averaged velocity in the wave-train is directed to the rear, 
even though the mass transport is forward), and also that the average of the horizontal 
velocity o‘i7er the whole wave system is zero. 
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total momentum 4. For finite A, both 8, and S, appear to be unbounded in 
the limit F f 1 (y f 1). No significance should be attached to the results with P 
close to 1, however, since the approximations used for the oscillatory-wave pro- 
perties are then unreliable. 

1.5 

1 4 

0.5 

n 

- 8-/  A 
/ 

0 0.2 0.4 0.6 0.8 1 -0 
F 

FIGURE 2. Mean values a+, -am, -8- of surface displacements in forward surge, oscil- 
latory wave-train and rearward surge, plotted as functions of Froude number P .  

The case of very deep water corresponds to the limit P 4 0 ( ~ 4  h). The 
asymptotic relationships given by (2.24) are 

and so the actual changes in surface level are proportional to u2/h,, thus becoming 
insignificant when h, is sufficiently large. It is perhaps worth emphasis that this 
extreme case is not analogous to the case of an unbounded rotating fluid. When a 
body is propelled horizontally near the surface of infinitely deep water, no forward 
surge can be generated because there is no long-wave mode having finite momen- 
tum or energy. But a continuous spectrum of such modes exists for an infinite 
rotating fluid (e.g. see Lighthill 1967). 

(s+,sw,S) N (Q, -8,  -&)A) 

3. The impulse principle 
We turn to the problem of a rigid body moved along the axis of rotation in an 

incompressible rotating fluid. It is supposed that the fluid extends to infinity 
in the axial direction upstream and downstream, but has a rigid cylindrical 
boundary of finite diameter. This case is in practical respectsmore significantthan 
the case of an unbounded fluid, which can be treated by an extension of the 
analysis developed here but which presents additional complications ; so atten- 
tion is restricted to the first case for the sake of simplicity. The inevitability of 
upstream influence will be demonstrated later, in $4, by an argument closely 
resembling the preceding one. In contrast with the water-wave problem, how- 
ever, a simple reckoning of total momentum is now unavailing, as is shown by 
the following considerations. 
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3.1. Implications of momentum conservation 

The problem is illustrated in figure 3, whose two parts are views respectively 
from a fixed frame of reference and from one moving with the body. We assume 
that the axial velocity U of the body in figure 3(a)  [and correspondingly the 
axial velocity of the undisturbed fluid in figure 3 ( b ) ]  is constant, and that the 
body experiences resistance consequent upon the formation of lee waves. Let 
(x, r ,  8 )  denote cylindrical polar co-ordinates, with x increasing in the forward 

R 
n 

FIGURE 3. Illustration of rotating-fluid problem: (a) body propelled with axial velocity 
U in fluid that originally has azimuthal velocity W ( r )  and no axial motion; (b )  body fixed 
in swirling flow approaching with axial velocity U .  

direction along the axis of rotation, and let (u, v, w) denote the respective velocity 
components. Let R denote the radius of the boundary. Accordingly, quantities 
corresponding to (2.1) and (2.2) are defined by 

The equation expressing conservation of momentum is as before 

aM a s  
at ax -+- = 0. (3.3) 

But now, since obviously the body cannot displace the fluid at  x = f 00 when 
only a finite time has elapsed from the start of the motion, conservation of mass 
requires M to be constant. Specifically, M = 0 in the fixed reference frame, and 
ill = - nR2pU in the moving frame. Hence (3.3) shows that the value of flow 
force S must be constant everywhere in front of the body and also constant 
everywhere behind: that is, the value 8, immediately in front is the same as at 
x = 00, and the value S, in the lee-wave system immediately behind is the same 
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as at x = - 00. Since 8, - S, equals the drag 9 on the body, this means that the 
propulsive force is exactly balanced by a reaction in the fluid at infkity. Denoting 
pressure perturbations by p f  (which are, of course, constant over cross-sections 
where the fluid is undisturbed), we have therefore 

Clearly it is only the difference in pressure that matters: for example, if the pres- 
sure level at x = co were fixed, then the drag on the body would cause a suction 
9/nR2 at x = - 00. 

Thus we see that momentum considerations can tell us nothing about the flow 
generated by the body. Observed in the fixed frame the fluid does have a definite 
amount of momentum, which is easily found to be pU x (volume of body) in the 
direction opposite to the direction of travel of the body [see appendix C, equation 
(C 9)]; but this is constant and therefore immaterial to the mechanism of wave 
resistance. Another basic physical difference between this and the water-wave 
problem appears from energy considerations. In  the fixed frame the agency 
propelling the body does work a t  the rate 977, and as before the supplied energy 
is manifested in the wave system. But in the moving frame, where the body ap- 
pears stationary and the force applied to it does no work, the pressure difference 
between the undisturbed flow far upstream and far downstream amounts to an 
energy supply at  the rate 9 U  (i.e. pumping work must be done to maintain the 
flow past the intervening obstruction). In  this way the energy of the lee waves 
is still supplied externally, not as in the water-wave problem at the expense of 
the kinetic energy of the original stream. 

3.2. Derivation of relationship between impulse and drag 

To complete a line of reasoning similar to that followed in $2, a quantity P, 
termed the axial impulse of the fluid needs to be considered. As primarily de- 
fined P, is an aggregate property of the flow caused by the body, but we shall 
find that dP,/dt = 9. Thus P, has the same r61e as total momentum in the water- 
wave problem, although it must mean something different in physical terms. 
For the moment, however, we defer matters of physical interpretation and pro- 
ceed formally. 

The following derivation deals with the flow as observed in the moving frame 
of reference, at times subsequent to the initial acceleration of the body up to its 
steady axial velocity U. That is, the body is taken to be at rest, the velocity 
vector u is therefore tangential along the fluid surface Y in contact with the body, 
and 

u = (u ,w,w)- t [ -U,O,  W ( r ) ]  for x - f  +oo. 

We also consider a hypothetical surface Z that includes the rigid cylindrical 
boundary r = R and is closed by cross-sections at infinity upstream and down- 
stream. The fluid is unperturbed from the primary state of motion u = ( - U ,  0, W )  
on each of the latter parts of X, and with regard to the cylindrical part we rely on 
the fact that u and the vorticity vector w = V x u are necessarily tangential 
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along it. The equation of motion is considered in the form (cf. Batchelor 1967, 
p. 382) 

_. au =uxw-V~+*/u12j, 
at (3.5) 

from which Helmholtz’s vorticity equation may be obtained by taking the curl 

aw 
- = v x (ux w). 
at 

P = P, + P,, 

of both sides, thus 

We define 

where x is the Euclidean position vector and dT the element of volume.-/- The 
volume V is bounded internally by Y and externally by 1; as just prescribed. Here 
and later, when surface integrals over X will be considered, the surface element 
ds is understood as a vector in the normal direction away from the interior of I? 
Since in the undisturbed fluid u and w are everywhere parallel to the axis of 
rotation, we see from (3.7) that the axial component P, of P, in which our main 
interest lies, is due wholly to the disturbance caused by the body. In  the case of 
axial symmetry, for instance, (Pr,)2 arises only from the azimuthal component of 
vorticit y . 

Since V is a fixed volume, we have 

= $ p j  X X {v X (U X W)}dT, 
V 

by virtue of (3.6). This volume integral may be reduced by a formula derived in 
appendix A, giving 

dP, = p /  U X W dT - $p/y+I: X X { (U X W) X d S } .  
at V 

No contribution to the surface integral is made from the cylindrical part of X, 
along which u and w are tangential and therefore u x w is normal, and there is a 

7 An expression like P, has been considered by Lamb (1932, $152) and Batchelor 
(1967, p. 520) as defining the impulse of a vortex system in an infinite fluid without internal 
boundaries. The analysis that follows in this subsection is comparable with Batchelor’s 
treatment. 

Note that the contribution P, to P could be absorbed into P, if 9 were taken as the 
surface of the body, rather than that of the contiguous fluid, and if the volume integral 
were interpreted as a Stieltjes integral with respect to  the discontinuity in velocity between 
the body and the fluid. Alternatively, it could be postulated that the velocity of slipping 
past the body is attained continuously through a boundary layer of extremely small 
thickness, in which case Stokes’s theorem gives P,y as the contribution to P due to vorticity 
in the layer. 
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cancellation of the contributions from the cross-sections a t  x = co and x = - co. 
Hence from (3.7) and (3.8) we have 

dP - = p I  u x wd7+:p19 x x ((g -u x w) x ds) 
dt V 

= p /  u x cod7 x x {V(p  + +p\uI2)  x ds), 
V 

(3.9) 

by virtue of the equation of motion (3.5). 
The surface integral in (3.9) may be reduced by a formula derived in appendix 

(3.10) 

And for the volume integral in (3.9) we deduce, using the condition of incompres- 
sibility V - u = 0, 

B, giving 1 
5 ss  ̂x x {V(p + *p \u \2 )  x cls) = ( p  + *plu)2)ds. 

I9 

(3.11) 

The second of these two integrals obviously vanishes; and the contribution to 
the f i s t  integral from C is seen to be a vector perpendicular to the axis, being 
thus immaterial to the axial component of dP/dt .  Hence, combining (3.9)-(3.11) 
and using the notation P, = (Vx) P, we obtain finally 

(3.12) 

This evidently expresses the axial component of thereaction to the hydrodynamic 
forces on the body, so that 

dP, = 9, (3.13) at 

where B is, as previously implied by this symbol, the external force that must 
be applied to the body in order to balance hydrodynamic resistance. 

The same conclusion holds with respect to the motion observed in the fixed 
frame of reference. An alternative derivation relating to this case is presented 
in appendix C, and there the principle expressed by (3.7) and (3.13) is 
generalized by allowing the axial velocity of the body t o  be an arbitrary function 
of time. Thus the effect of accelerating the body from rest may be included in P, 
although we have no need to bring this complementary aspect into our dis- 
cussion of upstream influence. 

3.3. Ph ysicab interpretation 

The concept of fluid impulse was originally explained by Kelvin in relation to 
accelerated bodies in infinite fluids (Lamb 1932, $119). In  keeping with his 
definition, - P may be interpreted as the impulse that, applied instantaneously 
and suitably distributed through the fluid, would annul the wave motion caused 
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by the presence of the body. More precisely, at  a time t,, say, the developments 
since an earlier time to could be annulled by the application of an external impulse 
-[P(tl)-P(t,)]. From the discussion in $3.1 it appears that P, is identifiable 
with the time-integral of the reaction in the fluid at  infinity, which accords with 
the present interpretation, and this equivalence will be demonstrated directly 
in appendix C. In  general, when the motion is viewed from a fixed frame of 
reference and the effect of accelerating the body from rest is included, P, is the 
sum of the integrated reaction at infinity and the total momentum imparted 
to the fluid. We note incidentally that, as Kelvin showed, this interpretation 
also applies unambiguously to an unbounded fluid, even though the two factors 
are separately indeterminate in this case (cf. Birkoff 1950, chapter 5, $5;  
Benjamin & Ellis 1966). 

It deserves particular emphasis that the two components of P defined by (3.7) 
have quite different significance at large times. There is good reason for assuming, 
as in the water-wave problem, that the flow near the body becomes virtually 
steady after a sufficient time, in which event P, becomes constant and so has no 
part in accounting for the drag as given by (3.13). But the drag also becomes con- 
stant, being an attribute of the local flow, and therefore (I$), ultimately increases 
proportionally to time. Even if the assumption of asymptotically steady flow 
near the body is relinquished, it still appears that (Pv), increases without bound 
when 9 has a positive mean value; for (3.13) shows the sum P, to have this pro- 
perty, whereas the component (Pv), evidently cannot have it if the flow velocity 
past the body remains finite. 

The asymptotic property (Pv), N Bt as t -+ 00 is to be the basis of the proof by 
contradiction in $4:  that is, it will be shown incompatible with the supposition 
that there is no upstream influence. Intuitively the property is nicely in accord 
with the notion of wave resistance in rotating fluids; for we know that vorticity 
perturbations spread away from the body as ‘inertial waves ’, and the growth of 
the volume integral (Pv), simply reflects the continual expansion of the zone 
under the influence of the applied force g. 

3.4. AxisymmetricJlows 
We now particularize the components of impulse (3.7) in the forms required for 
$4, but in passing note two aspects of the more general principle expressed by 
(3.7) and (3.13). First, the primary rotation need not be uniform: that is, the 
undisturbed azimuthal velocity W is an arbitrary function of radius. However, 
the discussion in $ 4  will be confined to the special case W = - fir. Secondly, 
axial symmetry of the body is unnecessary, but for simplicity it will be assumed 
in $4. 

Under this assumption the axial component of P, may be expressed by 

(Py), = n-pf .iir2dl, 
L 

(3.14) 

where L is the meridional contour of the body extending from its foremost to 
its rearmost point, dl is the element of arc length, and 6 is the meridional velocity 
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tangential to  L. Furthermore, only the azimuthal vorticity component 
6 = avlax - aular is relevant to  the axial component of P,: thus 

(3.15) 

3.5. Application to heterogeneous f lu ids 

Internal wave motions in heavy density-stratified fluids bounded below and above 
by fixed horizontal planes present the same difficulty that was explained in 
8 3.1 : namely, wave resistance cannot be related simply to  momentum production. 
This is also true for stratified fluids with only one or with no horizontal boundary, 
and so it appears that the present principle, of impulse related to the production 
of vorticity orthogonal t o  the main direction of motion, is equally vital in this 
other context. 

For two-dimensional motions in a vertical plane (x, y )  vorticity may be con- 
sidered as a vector perpendicular to the plane, and a revised definition of impulse 
is needed (see Lamb 1932,s  157) if one is to  avoid being concerned with the effects 
of vortex sheets on the vertical side walls that are implicit in the theoretical 
model. Also, for a stratified fluid, the vorticity equation (3.6) has a further term 
expressing the rate of vorticity production that is associated with flows through 
density gradients. If the Boussinesq approximation is allowed (i.e. the inertial 
effects of density variations are ignored), then the equation of motion is 

(3.16) 

where p is the average density and Vy represents a unit vector in the vertical 
direction. Hence, if the fluid is incompressible so that a stream function @ 
exists, it follows that the equation for the vorticity 6 = - V2$ is 

(3.17) 

An area A may be defined with the same significance as the volume V in $ 3.2, 
being bounded internally by the contour % of the solid obstacle in question. 
Then, proceeding essentially as before, one obtains 

(3.18) 

where B is the tangential velocity along %? and the contour integral is taken in the 
anticlockwise sense if the x-axis is to  the right. 

On the basis of this result the necessity of upstream influence as a concomitant 
of internal wave resistance can be demonstrated by the same sort of argument as 
in $4 below. 

3.6. Postscript 

Confidence in present ideas may perhaps be reinforced by noting a sidelight on 
the famous Kutta-Joukotvski formula for the lift force on a two-dimensional 

FL31 4 0  5 
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aerofoil. I n  exactly the same way that (3.18) is derived, one obtains for the lift 
on a body in an infinite fluid of uniform density the expression 

(3.19) 

Now consider axes moving with an aerofoil that has had a constant velocity U 
for some time, so that the adjacent flow has become steady relative to  these axes 
and therefore the contour integral in (3.19) is constant. The only contribution to 
the first integral is from the starting vortex, or sequence of such vortices, which 
appears to recede downstream with velocity U .  According t o  a very well-known 
a,rgument, the area integral of the concentrated vorticity being swept away is 
- I’, where I’ is the circulation around the aerofoil, and the distance x entailed 
in t,he first integral increases a t  the rate - U .  Hence we may conclude that 
2 = p l i r ,  as expected. 

The same conclusion may be reached by taking axes fixed relative to  the 
undisturbed fluid. From this viewpoint the area integral in (3.19) becomes con- 
st,ant a t  sufficiently large times, and we then have 

4. Necessity of upstream influence in a rotating flow 
The problem illustrated in figure 3 will now be treated in detail. The un- 

disturbed fluid is supposed to have a constant angular velocity -Q, and we 
are concerned with the flow caused by the steady translation of an axisymmetric 
body along the axis of rotation. It is assumed that a system of lee waves is formed 
and consequently the body suffers drag. On the further assumption that up- 
stream influence is absent, a description of the complete flow field is obtained, 
justifiable as an asymptotic approximation for t + 00. Deductions on this basis are 
t,hen juxtaposed with the impulse principle and a contradiction is reached, demon- 
strating that the hypothesis of no upstream influence is incorrect. 

Although mathematical rigour is not attempted, the argument depends on 
conjecture only in the following readily defensible aspects. First, i t  is taken for 
granted that the flow near the body becomes steady asymptotically. This sup- 
position appears extremely reasonable, being supported by experimental observa- 
tion and also by solutions of the linearized initial-value problem (Trustrum 1964; 
Miles 1969). I n  $4.1 the exact theory of steady flow arising without upstream 
influence is outlined, and the lee-wave system is shown to be representable as a 
superposition of uniform wave-trains. The second aspect in which the argument 
relies on a plausible conjecture concerns the‘ transient ’ zones that terminate these 
wave-trains downstream : the supposition is simply that the lengths of these 
zones are o( t ) ,  so that a t  sufficiently large times they become insignificant com- 
pared with the overall lengths of the respective wave-trains [which are neces- 
sarily O ( t ) ] .  As in the water-wave problem, this supposition is supported by the 
results of linearized dispersion theory, which shows the lengths in question to be 
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O(t*). The validity of the approximate description thus inferred for the complete, 
time-dependent flow is corroborated in $4.2, where, comparably with $ 2.2 
for the water-wave problem, an energy balance is shown to be satisfied. The 
contradiction of the impulse principle is established in $4.3, and finally, in 
fj 4.4, it is confirmed that the contradiction is resolved by allowing for upstream 
influence. 

4.1. Equations of steadyJlow 

The more convenient choice here is to take the frame of reference in which the 
body is stationary [figure 3(b ) ]  and the velocity of the undisturbed fluid is 
( -  U ,  0, - Qr). It is well known that on the assumption of a steady flow which 
is asymptotic to this uniform state upstream (that is, in the absence of upstream 
influence as we understand it), the full equations of motion are reducible with- 
out approximation to a linear equation for the stream function (see Squire 
1956, $3.4; or Batchelor 1967, $7.5). Specifically, if the stream function is ex- 
pressed as the sum - &Urz+ +(x, r ) ,  then the perturbation @ is found to satisfy 

in which k = 2n/u. (4.2) 

The corresponding expression for the velocity field is 

where the azimuthal component w is determined by the condition that the 
circulation 2nrw is invariant along each stream-surface. 

For the flow inside the rigid cylinder, the boundary conditions applying 
upstream and downstream of the body are 

+(x,O) = 0, $(x,R) = 0. (4.4) 

A set of fundamental solutions of (4.1) satisfying these conditions is 

= +,(r) Re {exp ( i ~ ,  x + v,)], say, J 
where the j ,  (n = 1,2,3,  .. .) are positive zeros of the Bessel function J1, the v, 
are arbitrary, and 

(cf. Squire 1956, $3.6). In  the derivation of ( 4 4 ,  the Qn(r) are presented as 
eigenfunctions of the (singular) Sturm-Liouville system 

(4.6) = k 2 -  (j,/R)' 

and the general Sturm-Liouville theory tells us that the eigeiivalues (k2-  K ; )  

are all real and none is negative. The least eigenvalue is (jl/R)2 = (3.S32/R)2, 

5-2 
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and thus it is seen that a 
( 4 4 1  if and only if 
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periodic solution is possible [i.e. K, =+ 0 and real in 

i.e. 
‘I 

U < 0.522ClR. J 
kR = 2ClRIU > 3.832, 

This condition corresponds to the condition of subcritical flow in the water- 
wave problem, and it is henceforth assumed. 

The set (4.5) includes precisely rn independent periodic solutions ifjm+l 2 kR > 
j,. It appears, therefore, that the lee-wave system supposed to be formed at a 
sufficient distance behind the body (i.e. far enough so that those components of 
the full solution having real-exponential dependence on x have decreased to  
insignificance) is generally representable by the series 

ma W?. 

@ = 2 An@., = 2 A,$%(r)cos ( K ~ x +  vn) ,  
n = l  n = l  

(4.9) 

where m is determined by the preceding inequalities. 

to the weight-function r-l, thus 
We note that the infinite sequence {q5.,} is orthonormal on [0, R] with respect 

(4.10) 

The sequence is also complete in L,, from which fact the generality of the present 
account of the lee-wave system could be rigorously established. 

4.2. Drag related to wave energy 

It will next be shown how the theoretical model just outlined appears to be 
consistent, to a first approximation, with an energy balance for the wave system 
as it evolves with time. Thus again, as in the water-wave problem, we appreciate 
that approximate energy considerations tend to reveal nothing contrary to the 
hypothesis of uniform steady flow upstream. Emphasis of this aspect seems essen- 
tial to the defence of present views about upstream influence. 

First, the drag 9 on the body is expressed by evaluating the reduction in flow 
force X [as defined by (3.2)] between the steady flows upstream and downstream. 
Using the fact that stagnation pressure is a function only of the total stream 
function, one readily derives [cf. Benjamin 1962, equation ( A 2 2 ) ]  

(4.11) 

where @ is the stream-function perturbation downstream. Components @., 
given by (4.5) with real-exponential dependence on x evidently make no contri- 
bution to this integral, as would be expected since S, must be the same for every 
cross-section downstream. After the substitution of (4.9) in (4.1 l), the ortho- 
gonality condition (4.10) shows that 

m 
9 = 7rp C K ~ A ; .  

n = l  
(4.12) 
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Thus each wave component contributes separately to B. Note that, according to 
these deductions, no drag could occur if the condition (4.8) were not satisfied. 

The energy density of the downstream flow is 

E = np (u2+v2+w2)rdr s4 

= E,+E,, say, 

where E, is the energy density of the original, undisturbed flow and E, is the 
part of E depending on $. Using the differential equation (4.1), and also the 
boundary conditions (4.4) in two integrations by parts, we find that 

Next (4.9) is substituted, the orthogonality condition is again used, and the 
resulting expression is averaged with respect to x. The mean energy density of 
the lee-wave system is thus found to be 

(4.14) 
n = l  

The results so far are exact within the framework of the steady-flow model. 
But now time-dependent features are considered, and in order to warrant a 
simple approximate account of the energy balance the disturbances downstream 
are assumed to be small in amplitude. Accordingly, to estimate the distances 
over which the lee waves have become established at large but finite times, we 
may use the asymptotic first approximation given by linearized wave theory 
(e.g. see Lighthill 1967). That is, each component represented in (4.9) is taken as 
a uniform wave-train whose point of termination, say x = x;, has a constant 
velocity given by dxA/dt = ( c ~ ) ~  - U < 0, where ( c ~ ) ~  is the forward group velocity. 
[Here we rely in effect on the familiar principle that the energy of a sinusoidal 
wave-train is transmitted at  its group velocity.] As was noted earlier, linearized 
theory shows that the transients at the end of a developing wave-train cover a 
length O(t*),  which therefore eventually becomes an insignificant fraction of the 
total length of the train. Thus the present approximation is seen to be justified 
a t  sufficiently large times: the understanding is that time is large enough to 
discriminate distances that are small compared with the overall lengths of the 
wave-trains but large compared with the lengths of the transient zones and the 
wavelengths 2 n - / ~ , ,  so that then the distributions of aggregate quantities such as 
energy are accurately represented by averages over these intermediate distances. 
The same idea was introduced in $ 2 . 1  for the treatment of the water-wave prob- 
lem, and it may be formally substantiated by use of the averaging operator de- 
fined in $4.3 below. 

Being stationary relative to the body, the established waves have a phase 
velocity U relative to the fluid. Hence the velocity Cn = - dxA/dt = U - ( c ~ ) ~  
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a t  which the point of termination recedes downstream can be found by treating 
(4.6) as an expression for U in terms of the wave-number K,. That is, from 

2RR 
U =  

(KiR2 +jp 

we obtain (4.15) 

Since each wave component contributes separately to the expression (4.14) 
for E,, it follows that the rate of increase of the total energy &in the wave system 
is approximately 

m m 
- = npk2 C CnA,2, = n-pU C K ~ A : .  (4.16) 
d b  

Comparing (4.12) we see this to  be the same as 9 U ,  which was shown earlier (at 
the end of 5 3.1) to be the rate of energy supply to the fluid a t  infinity. Thus, to a 
first approximation, the supplied energy appears to be manifested wholly in the 
lee-wave system. 

4.3. Reductio ad absurdum 

We come to the crucial point of this discussion on applying the impulse principle 
that was established in § 3. The fact that the flow near the body becomes steady 
as t -+ 00 implies that 9 becomes a constant, which is positive by hypothesis, 
and also that (PY.), given by (3.14) becomes a constant. Hence the principle 
expressed by (3.7) and (3.13) means that (PV), - 2% as t+m, where (Pv)x given 
by (3.15) is the component of impulse depending on vorticity perturbations 
throughout the fluid. 

Thus it appears necessary that the lee-wave system should manifest a positive 
amount of impulse which, like the energy 8, grows without limit in proportion 
to the elongations of the component wave-trains. To clarify this idea, let a(Pv)z 
denote the density of impulse with respect to x, and suppose that the local mean 
value a(PT,)z can be partitioned among the wave components, similarly to the 
way in which the mean energy density (Ew = 88) is expressed by (4.14). Then, 
in analogy with (4.16), one would expect that  

at n= 1 n= 1 

n= 1 

where as before C, denotes the rate of increase of the length over which the nth 
component is established. 

The expression (3.15) for (PV), implies 

(4.17) 

by virtue of the differential equation (4.1) satisfied by $. But this mean value 
is precisely zero, because each component solution $n of the differential equation 
is a sinusoidal function of x. Hence we conclude that the total impulse of the 
lee-wave system remains bounded as t --f 00. 
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On the strength of this fact it becomes intuitively clear that the impulse 
principle is contradicted and therefore the assumption of steady upstream flow 
is incorrect. The analogy with the water-wave problem is impressiive: we have 
again found that an assessment of the energy in the wave system reveals no 
inconsistency in the absence of upstream influence, but that an assessment of 
impulse is outstandingly discrepant. Some further discussion is needed, however, 
in order to establish the contradiction definitely. 

First, it  has to be confirmed that the steady flow behind the body cannot include 
disturbances independent of x (i.e. Taylor columns), which could make a positive 
contribution to (4.17). Considering the completeness of the sequence {q5n}, 
we see at  once that the differential equation (4.1) with boundary conditions 
(4.4) generally has no solution independent of x; but an exception must be re- 
cognized in the case when exactly kR = j n  for some n > 1, say n = p ,  so that 
$p = A,&(Y). The impossibility of an x-independent component of $ in the 
extraordinary case may be argued by the fact that a contribution would be made 
by it to  &,,, from the first term on the right-hand side of (4.13), whereas none 
would be made to 9 as given by (4.1 1) : hence the overall energy balance would not 
be satisfied. Alternatively we may consider that the angular-momentum per- 
turbation downstream has a mean density 

(4.18) 

which is 2/k times the right-hand side of (4.17). It can easily be shown that 

(4.19) 

so that a component of $ in the form A,  &(r) with A, > 0 would make a positive 
contribution to both (4.17) and (4.18). Also, as will be shown presently, such a 
disturbance would be uniform over virtually the whole distance to its extremity 
receding downstream. But the total perturbation N must always be zero, 
because the angular momentum of the whole fluid remains constant in the absence 
of an external torque and, by hypothesis, there is no effect upstream that can com- 
pensate a change of angular downstream of the body. Thus we require A ,  = 0 
to conform with dN/dt = 0 for all t.t 

It remains to eliminate the possibility that a sufficient amount of impulse 
might somehow arise in transient effects at  and between the terminations of the 
component wave-trains. In the light of the analogy with the water-wave problem 
this appears extremely unlikely, but to rule it out decisively we need to develop 

t A referee has drawn attention to the possibility of a columnar wake in which the 
vorticity 5 is different from lcz$/r, and which therefore might manifest a positive impulse 
without violating the condition of angular-momentum conservation. This would, of course, 
be a real-fluid effect, of the kind that remains when the Reynolds number of the flow is 
extremely large, and it can reasonably be expected as a feature of rotating flow behind any 
suffmient,ly bluff body. Since our theoretical model does not allow this possibility, it seems 
prudent to limit present contentions to the case of slender streamlined bodies, such that 
there is no region of reversed flow downstream. On the other hand, bluff bodies appear 
intuitively to be even more liable to exert upstream influence ! 
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an argument similar to Whitham's theory cited in $ 2 .  The starting point is a 
pair of exact equations for time-dependent axisymmetric flow: first the equation 
satisfied by the vorticity 5 = avjax - sup, 

ac  ac ac 1 -+u-+v--- 
at ax ar r (4.20) 

which is derivable from the axial and radial equations of motion as given by 
Squire [1956, equations (10) and (ll)]; and secondly the equation expressing 
conservation of azimuthal circulation a 

aw aw a(rw) 
r-+ur-+v- = 0, 

at ax ar 
(4.21) 

which is equivalent to (12) in Squire's article. We note that the steady flow de- 
scribed by (4.9) is an exact solution of these equations, and also of their linearized 
forms. Hence, if the amplitudes A ,  are considered to be of first-order smallness, 
say O(e), the linearized equations may be used to  obtain a consistent first 
approximation to each component wave-train in its entirity, including the time- 
dependent features a t  its downstream end. The main conclusions of the relevant 
theory have already been stated. Asymptotically for large t ,  each wave-train is 
uniform and steady over a length C,t, and the transient zone a t  its downstream 
end has an effective length proportional to  t3. Furthermore, 5 and all other per- 
turbations remain bounded in the transient zone, being of the same order of 
smallness there as in the steady part of the wave-train. 

Now, we are concerned with the aggregate property (P,), that is required by 
the impulse principle to increase proportionally to t ,  and is the volume integral 
of the quantity r< which is uniformly bounded everywhere. Therefore, to obtain 
an asymptotic estimate of (P,),, it is sufficient to  use a form of equations (4.20) 
and (4.21) averaged ov0r distances that are o(t). A suitable averaging operator 

(4.22) 
A is defined by 1 x+: 

[(x,  r ,  t )  = A< = - <(X,  r ,  t ) d X ,  d-: 
in which 5 = at8 with + < p < 1, so that E = o(t) .  We then have 

andsimilar resultsfor the other terms in (4.20) and (4.21). Thus, taking non-linear 
terms to the right-hand side and writing u' = u - I Ul , wf = w - I f i r  1 ,  we obtain 
from these equations the asymptotic approximations 

(4.24) 



Upstream in$uence 73 

To obtain approximations to O(e2), the results of the linearized theory may 
be substituted on the right-hand side of (4.23) and (4.24). It has already been 
noted that, being sinusoidal in x, the steady parts of the component wave-trains 
make no contribution to mean values such as and 8,  and, by virtue of the 
specification /3 > +, all effects confined to the transient zones at the downstream 
ends of the wave-trains are evanescent under the averaging operation A. Every- 
where in the lee-wave system except in the transient zones, the linearized theory 
gives as an asymptotic approximation 

which is the same as according to the exact steady-flow theory; and on substitu- 
tion of these expressions the quantities within the brackets in (4.23) and (4.24) 
vanish identically. We also have asymptotically 

- ‘u = i a q  6 - = --(--I a i a $  
r ax ’ ar r ar ’ 

obtain finally 2 a iag 4wa5G 

Hence, upon eliminating W‘ between the reduced forms of (4.23) and (4.24), we 

(4.2.5) 

It is worth further emphasis that to O(e2) this equation becomes exact asymp- 
totically for large t ,  and so the approximation is certainly adequate for the 
present purpose. 

(&G) F r ( T % ) + 7 3 2 = 0 .  

The general solution of (4.25) subject to the boundary conditions 
- 
$(x, 0, t )  = 0, iqx, R, t )  = 0, (4.26) 

is expressible in the form? 
m 

n = l  

- 

1c. = X [fn{x+ Ut+ (Co)ntl+gn{x+ Ut-(~o)n’}I$n(r),  (4.27) 

where (c0),= ZQRlj, = UkRIj,. (4.28) 

In  the representation of disturbances propagating downstream only, as required 
by the hypothesis of no upstream influence, all the f n  are relevant and the g, 
are relevant for which n satisfiesj, < kR, so that U - (c0), > 0. But it was shown 
earlier that at a fixed distance behind the body, say at  x = xl, every component of 
$ must vanish asymptotically as the flow becomes steady. Hence, in using (4.27) 
to evaluate the expression for d(P,),/dt given by (3.15)) we are faced with a set 
of results like 

- 

+ O  for t - tm, 

t Note that long waves with isolated discontinuities in x and t can be justified as solu- 
tions of (4.25). The full linearized theory shows that such apparent discontinuities are in 
fact transient zones whose lengths are asymptotically proportional to t* (see Benjamin & 
Barnard 1964, 34). Hence the averaging operation A obliterates these zones even more 
quickly than the terminal zones of sinusoidal wave-trains. 
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from which we conclude that the rate of increase of the total impulse becomes 
zero asymptotically-in contradiction of the impulse principle if 9 $: 0. 

Thus the hypothesis of no upstream influence, upon which the theoretical 
model defined in $4.1 is based, has been shown to be incompatible with the sup- 
position that wave resistance occurs, and the following conclusion has been 
established by contradiction: If,  in a uniformly rotating inviscid JEuid Jilling an 
inJinitely long cylinder, a solid body i s  moved axially with a constant velocity 
U < 0*522QR, so that it experiences wave resistance, then aJinite disturbance of 
the Jluid ALWAYS occurs over a continually increasing distance ahead qf the body. 

4.4. Impulse of Taylor columns 

Unlike its precedent in the water-wave problem ($52.3, 2.4), the argument just 
used cannot easily be extended to evaluate the columnar motions whereby up- 
stream influence is propagated. In  general many long-wave modes are entailed, 
not only one as before, and the relationships between time-dependent features 
in front and in the rear of the obstacle are rather complicated. Further uses of 
the impulse principle are left for subsequent study, and to complete the present 
discussion we merely confirm that the contradiction demonstrated in $4.3 is 
indeed resolved by allowing for upstream influence. 

The linearized theory evoked in $94.2 and 4.3 indicates that steady periodic 
wave-trains cannot be established ahead of the body, because for finite values of 
the axial wave-number K, the group velocity is directed downstream. But the 
difference between phase and group velocity vanishes in the limit K,+ 0 (just 
as for surface waves on water of finite depth), and thus the restraint on forward 
transmission does not apply to extremely long waves. The theory of such waves is 
largely recovered by what has been worked out in $ 4.3, and full accounts may be 
found in several papers (e.g. Trustrum 1964; Benjamin & Barnard 1964; Light- 
hill 1967). In the following description of the relevant set of fundamental 
solutions we continue to use the moving reference frame, in which the body 
appears stationary. We note that at  moderate Rossby numbers (i.e. ICR not 
extremely large) the amplitudes of the disturbances now in question are of 
second-order smallness, in the sense that the lee-wave amplitudes are of first- 
order smallness. 

It is assumed that the forcing effect of the body has been acting steadily for a 
fairly long time. Then in the interior of a particular wave the motion is indepen- 
dent of x,  specifically such that the stream-function perturbation is 

gn = const. x +n(r);  (4.29) 

but the extremity of the wave propagates with either of the velocities - U rt (c& 
where (c0), is given by (4.28). Thus downstream propagation is possible for all n; 
but upstream propagation [ - U + ( c ~ ) ~  > 01 is possible only for n 6 m, where as 
before m is defined by the inequalities jmfl 2 kR > j,. 

The present aspect can be nicely appreciated by imagining that the steady 
flow established immediately in front of the body has been measured, so that the 
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stream-function perturbation at a certain x is a known function of r ,  say Ffr). 
In  general this is expressible as the Fourier-Bessel series 

in which 

(4.30) 

by virtue of (4.10). We now recognize that the series has two parts with con- 
trasting interpretations. The terms with n > m must be contributed by com- 
ponenti disturbances of the form (4.5) with real-exponential dependence on x, 
and so this contribution to the upstream flow would be found to  diminish rapidly 
into insignificance with increasing distance from the body. On the other hand 
the terms with n < m are accountable only to  the long-wave modes (4.29) 
which, at large times, comprise a disturbance extending to  great distances up- 
stream. This is the kind of disturbance commonly known by the term Taylor 
column. 

Let P,' denote the impulse of the forward column. Its  derivative with respect 
t o  time may be deduced from the first equation in (4.17), together with the facts 
expressed by (4.27) and (4.28). I n  this way, and by using the property (4.19) 
of the Sturm-Liouville functions $,, one obtains 

m 

'?I,= 1 
= 2inpU (ER-j,)B,. (4.31) 

It readily appears that this expression is positive for reasonable models of the 
column. [For instance, if -u B - U a t  r = R everywhere upstream, as would 
be expected, then none of the B,'s can be negative.] We cannot equate this ex- 
pression to  the drag 9, however, because columnar disturbances on the down- 
stream side generally also contribute to the total impulse. 

I am indebted to  Mr L. E. Fraenkel for valuable advice about the presentation 
of this paper. 

Appendix A. Reduction of a volume integral 
The integral is c 

I = J x x  (VxQ)dT, 
V 

where V is a volume with internal boundary 9 and external boundary C, x 
is the three-dimensional position vector, and Q ( x )  is a differentiable vector field. 
Considering the vector identity 

X X ( V X Q )  = - Q x ( V X X ) + V ( X . Q ) - ( X . V ) Q - ( Q . V ) X ,  
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we note that the first term on the right-hand side is zero (since x = $Vxi), and the 
last term reduces to - Q. Furthermore, 

a(%Q) 3 ~ .  ( x * V ) Q  = ___-- 
ax, 

Hence (A 1)  is equivalent to 

= z1vQd7- /9+zxx  ( Q x d s ) ,  

which is the formula used in 3 3.2 and appendix C. 

Appendix B. Reduction of a surface integral 

J = IY x x (VH x ds),  
The integral is 

where Y is a simple closed surface and H ( x )  is a differentiable scalar function of 
the three-dimensional position vector x. The principles used in the following 
argument are standard (e.g. see Korn & Korn 1961, chapter 5). 

We consider that Y has the representation 

x = r(a,P), 
in which a, /3 are scalar parameters, and without loss of generality we may assume 
that a, /l E [0 ,  11. The vector element of area is expressible as 

so that 

Since9 is a closed surface, H(r) is a periodic function of a and p. Accordingly, 
if the two components of (B 2 )  are integrated by parts over the period of p 
and a respectively, the integrated terms cancel and there follows 

= ZJ Hds, 
9 

which is the formula used in $3.2 .  
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Appendix C. Alternative derivation of impulse principle 
The derivation in $3.2 involved a reduction of integrals expressing dP/dt.  

Here a reduction of the original expression (3.7) for P is considered, which re- 
veals its equivalence with Kelvin’s definition of fluid impulse. Incorporating a 
generalization that was not needed in the discussion of upstream influence, 
we take a fixed frame of reference (so that the fluid at infinity has no axial motion) 
and let the axial velocity of the body be an arbitrary function of time. 

Recapitulating (3.7) we have 

in which w = V x u. Applied to the volume integral in (C l), the formula estab- 
lished in appendix A gives 

n L L 

Thus, the surface integral in (C 1) is cancelled and we are left with 

P = psyud7 - &jzx x (u x d s )  

= m+P,, say. (C2) 

Here m is the momentum of the fluid and P, is an effect developed over the 
outer boundary Z, which is comprised from the rigid cylindrical surface r = R 
and cross-sections at  00. To confirm the interpretation of P explained in 53.3, 
which corresponds to Kelvin’s definition, it remains to show that P, represents 
the time-integral of the reaction across Z. 

[Note incidentally that if the flow were irrotational (i.e. if W = 0) and there- 
fore a velocity potential @ existed such that u = VQ, then the formula established 
in appendix B would give immediately 

P, = - P I ,  @as. (C 3) 

This is a familiar representation of the property just described, in the case of 
irrotational flow (cf. Kochin, Kibel & Roze 1964, $7.7).  After the substitution 
u = VQ, the volume integral m is reducible to two surface integrals, one of which 
cancels P, as given by ((23). The result is 

which is a well-known expression for the Kelvin impulse (i.e. the added mass for 
unit velocity of translation) generated by a body moving along a straight path 
(cf. Lamb 1932, 3 121).] 
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In  general) recalling that u denotes the axial component of u, we have 

m,=pS V udr, (C 5) 

(pZlz = - + p ~ 2 / ~ ~ / ~  0 --m u(x, R, e)axae. (C6) 

But the axial component of the equation of motion (3.5) reduces on the surface 
r = R t o  

and the radial component shows that p / p + & l ~ 1 ~ + p , ’  (const.) for x-+ k co. 
Hence (C 6) gives 

(C7) 
d 
;tt (PC), = 7rR2(PLx - P:=-co), 

which is the anticipated result. 0 

Thus it appears that 
dP, dm, 
~ = -+nB2(p;=m-p;,-m). at at 

This constitutes a statement of the impulse principle, for the right-hand side 
evidently equals the applied force 9. 

Finally, a simple expression for the momentum m, will be derived. Again 
recalling that x denotes the axial co-ordinate and u the axial component of u, 
we note that v * (xu) = xv * u + (Ox) * u = (VX) - u = u. 

Hence (C5) leads to m, = 1 V - (xu)dT = /y+z xu as. 
v 

The surface integral over 2 is zero, and that over Y may be reduced by use of 
the kinematical boundary condition 

u e d s  = U(ds) ,  on 9. 

m, = Sy xu as = U x(ds), = - U x (volume of body) ,  

Thus we deduce 

SY 

which is the result noted in 4 3.1. 

REFERENCES 

BATCHELOR, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press. 
BENJAMIN, T. B. 1962 Theory of the vortex breakdown phenomenon. J .  Fluicl Mech. 

14, 593. 
BENJAMIN, T. B. & BARNARD, B. J. S. 1964 A study of the motion of a cavity in a rotating 

liquid. J .  Fluid Mech. 19, 193. 
BENJAMIN, T. B. & ELLIS, A. T. 1966 The collapse of cavitation bubbles and the pressures 

thereby produced against solid boundaries. Phil .  Trans.  Roy. SOC. Lond. A 260, 221. 
BIRKKOFF, G. 1950 Hydrodynamics. Princeton University Press. (Dover edition, 1955.) 
GREENSPAN, H. P. 1968 T h e  Theory of Rotating Fluids. Cambridge University Press. 



Upstream inJ1uence 79 

KOCHIN, N. E., KIBEL, I. A. & ROZE, N. Z. 1964 Theoretical Hydrodynamics. New York: 
Interscience. 

KORN, G. A. & KORN, T. M. 1961 Mathematical Handbook for Sciendists and Engineers. 
New York: McGraw-Hill. 

LAMB, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press. (Dover edition, 
1945.) 

LIGHTHILL, M. J. 1967 On waves generated in dispersive systems by travelling forcing 
effects, with applications to the dynamics of rotating fluids. J .  Fluid Mech. 27, 725. 

LONG, R. R. 1953 Steady motion around a symmetric obstacle moving along the axis of 
a rotating liquid. J .  Meteorology, 10, 197. 

MARWO, H. 1957 Modern developments of the theory of wave-making resistance in the 
non-uniform motion. The Society of Naval Architects of Japan, 60th anniversary series, 

MILES, J. W. 1969 Transient motion of a dipole in a rotating flow. J .  Fluid Mech. 39, 
433. 

PRITCHARD, W. G. 1968 A study of wave motions in rotating fluids. Ph.D. Dissertation, 
University of Cambridge. 

SQUIRE, H. B. 1956 Rotating Fluids, article in Surveys in Mechanics (ed. Batchelor and 
Davies). Cambridge University Press. 

STEWARTSON, K. 1968 On inviscid flow of a rotating fluid past an axially-symmetric 
body using Oseen’s equations. Quart. J .  Math. Appl. Mech. 21, 353. 

STOKER, J. J. 1953 Unsteady waves on a running stream. Cornm. Pure Appl. Math. 6, 
471. 

TAYLOR, G. I. 1922 The motion of a sphere in a rotating liquid. Proc. Roy. Soc. Lond. 
A 102, 13. 

TRUSTRUM, K. 1964 Rotating and stratified fluid flow. J .  Fluid Mech. 19, 415. 
WHITHAM, G. B. 1962 Mass, momentum and energy flux in water waves. J .  Fluid Mech. 

12, 135. 

vol. 2, p. 1. 




